Sviluppo di Sistemi Nanofibrosi per Energy Harvesting e Sensing

Progetto di Ricerca

Questa ricerca, in collaborazione con il CIRI MAM dell'Università di Bologna, mira alla realizzazione e caratterizzazione di materiali piezoelettrici nanofibrosi ottenuti mediante la tecnica dell'elettrofilatura. I tradizionali film piezoelettrici a base polimerica, ad es. PVdF, non mostrano naturalmente un comportamento piezoelettrico a meno che non vengano trattati meccanicamente ed elettricamente dopo che sono stati realizzati. Studi preliminari sui polimeri piezoelettrici elettrofilati, invece, hanno mostrato che poiché le fibre vengono stirate meccanicamente e polarizzate elettricamente durante il processo stesso di produzione del materiale, il materiale mostra immediatamente un comportamento piezoelettrico, senza bisogno di ulteriori complessi e costosi trattamenti. Inoltre, l'elettrofilatura permette di realizzare tessuti-non-tessuti polimerici costituiti da fibre di dimensioni nanometriche aventi elevata porosità ed elevatissimo rapporto superficie / volume. Queste caratteristiche possono consentire una integrazione del tessuto all'interno di altri materiali e/o strutture, conferendo a queste ultime la funzionalità propria delle nanofibre. Realizzando pertanto nanofibre di materiale piezoelettrico si vuole conferire tale comportamento a altri materiali e/o strutture che normalmente non mostrerebbero tale comportamento. L'obbiettivo che si vuole raggiungere è duplice: 1) lo sviluppo di un sensore di impatto perfettamente integrato in un altro materiale; 2) la realizzazione di un dispositivo piezoelettrico integrato in un materiale per il recupero di energia elettrica da vibrazioni meccaniche. Dal momento che la tecnica produttiva del materiale piezoelettrico è l'elettrofilatura, è possibile ottenere di riflesso un grande vantagio economico. I componenti costitutivi dell'apparato di filatura sono di semplice reperibilità ed assemblaggio e hanno basso costo; la produzione stessa di materiali polimerici elettrofilati rappresenta un costo trascurabile ai fini di una filiera produttiva su larga scala.

Piano delle attività

La prima fase si articolerà sull'ottimizzazione dei parametri di elettrofilatura e delle concentrazioni dei polimeri e solventi per ottenere materiali nanofibrosi di buona qualità. In seguito verranno implementate le prove di caratterizzazione dei materiali realizzati per indagarne le proprietà meccniche, piezoelettriche e di stabilità temica in confronto con sensori e materiali tradizionali che non possono però essere completamente integrati in dispositivi. Infine, una volta assemblati i dispositivi si procederà alla caratterizzazione a medio temine per verificare la risposta nel tempo e la entità di conversione elettromeccanica (e possibile accumulo elettrico) di energia.